Articles

A Novel Synthetic Method of the (\pm)-(3a $\alpha, 8 a \alpha)$-Ethyl 8 β-H ydroxy- 6β-methyl-2-oxooctahydro-2H-cyclohepta[b]furan-3 α carboxylate and Its Chemical Transformation to
 (\pm)-(3a $\alpha, 8 \mathrm{a} \alpha)$-3 $\alpha, 6 \beta$-Dimethyl-3,3a,4,5,6,8a-hexahydro-2H-cyclohepta[b]furan-2-one, (+)- and (-)-7 β-(2-Acetoxy-1 α-methylethyl)-4 β-methyl-2-cyclohepten-1 β-ol, and (+)- and (-)-7 β-(2-Acetoxy-1 α-methylethyl)-4 β-methyl-2-cyclohepten-1-one.
 Possible Common Synthetic Intermediates for Pseudoguaianolides, 4,5-Secopseudoguaianolides, Guaianolides, 4,5-Secoguaianolides, and Octalactins

Fumito Shimoma, ${ }^{\dagger}$ Haruhiko Kusaka, ${ }^{\ddagger}$ K atsuaki Wada, ${ }^{\ddagger}$ Hidenori Azami, ${ }^{\ddagger}$
Masafumi Yasunami, ${ }^{\ddagger}$ Toshio Suzuki, ${ }^{\dagger}$ Hisahiro Hagi wara, ${ }^{\dagger}$ and Masayoshi Ando*,s
Graduate School of Science and Technology, Niigata University, Ikarashi 2-8050, Niigata 950-21, J apan, Department of Applied Chemistry, Faculty of Enginering, Niigata University, and Department of Chemistry, Faculty of Science, Tohoku University, Aobaku, Sendai 980, J apan

Received August 14, 1997
The catalytic hydrogenation of ethyl 8-hydroxy-6-methyl-2-oxo-2H-cyclohepta[b]furan-3-carboxylate (6), which was derived regioselectively from 4-methyltropol one (1) in four steps in 62% overall yield, gave (3a $\alpha, 8 a \alpha$)-ethyl 8β-hydroxy- 6β-methyl-2-oxooctahydro- 2 H -cyclohepta[b]furan- 3α-carboxylate (8b) in 45% yield. It is noteworthy that four asymmetric centers newly introduced on the sevenmembered ring of $\mathbf{8} \mathbf{b}$ were controlled to be syn-oriented by the single operation. The latter was transformed to (3a, $8 \mathrm{a} \alpha$)-3 $3,6 \beta$-dimethyl-3,3a,4,5,6,8a-hexahydro-2H-cyclohepta[b]furan-2-one (17a) in 77% overall yield in five steps. Reduction of $\mathbf{1 7 a}$ with LiAlH_{4} gave (\pm)-7 β-(2 -hydroxy-1 $\alpha-$ methylethyl)-4 β-methyl-2-cycl ohepten-1 β-ol (22), whose enantioselective acetylation was achieved by vinyl acetate in the presence of Lipase PS to give (+)-7 β-(2-acetoxy-1 α-methylethyl)-4 - -methyl2 -cyclohepten-1 β-ol ($\mathbf{2 4}$) in 48% yield (93% ee) or in 52% yield (77% ee) and (-)-22 in 52% yield (70% ee) or 44% yield (89% ee). Oxidation of (+)- 24 with MnO_{2} gave (-)- 7β-(2 -acetoxy- 1α-methyl ethyl)-4 β-methyl-2-cyclohepten-1-one (-)-(25). Similarly, acetylation of (-)-22 followed by oxidation of resulting (-)-24 gave (+)-25.

Pseudoguaianolides, 4,5-secopseudoguaianolides, guaianolides, and 4,5-secoguaianolides are rapidly expanding groups of natural products comprising to date ca. 1000 varieties. ${ }^{1}$ Some of them have been shown to exhibit high biological activities such as antitumor, ${ }^{2-15}$ antiulcer, ${ }^{15}$ cardiotonic, ${ }^{15}$ antisistosomal, 2,16,17 anthelmintic, ${ }^{18}$ contra-

[^0]ceptive, ${ }^{19,20}$ immunomodulation, ${ }^{21}$ root-growth stimulatory, $2,22,23$ root-growth and germination inhibitory activities, ,2,3,12,13,14,24,25 and preventive or curative activities for

[^1]crop diseases. ${ }^{3,14}$ Although the total syntheses of these natural products were reported by many research groups, ${ }^{26,27}$ their efficient and systematic syntheses from easily available compounds are still very important because of the diverse biological activities of these compounds and since they are available from natural sources often in only small quantities. A large number of pseudoguaianolides, ${ }^{27}$ 4,5-secopseudoguaianolides, 4,5secoguaianolides, and some guaianolides have a cis-fused α-methylene γ-lactone moiety at the C-6,7 position and a methyl group at C-10 which is oriented to the same side of the γ-lactonering as a common structural feature. The stereocontrolled introduction of these groups at C-6,7 and $\mathrm{C}-10$ is critical in the syntheses of these compounds.

Recently potent cytotoxic eight-membered lactones, octalactins A and B, were isolated from natural marine sources. ${ }^{28}$ For the syntheses of these compounds, we envisioned Baeyer-Villiger oxidation of appropriately functionalized cycloheptanone derivatives mentioned below.

In connection with the general synthetic strategy of these natural products, we envisioned common synthetic intermediates A, B, and C by the retrosynthetic analyses (Figure 1). The intermediates may be prepared from compound II, whose all-cis stereochemistry of substituents on the seven-membered ring may be introduced by the catalytic hydrogenation of unsaturated γ-lactone derivative I. The regioselective synthesis of I may be achieved by the application of tropolone chemistry ${ }^{29}$ from 4-methyltropol one (1). ${ }^{30,31}$

In this paper we report the result of the regio- and stereoselective syntheses of common synthetic intermedi-
(20) J öchel, W. Angew. Chem., Int. Ed. Engl. 1962, 1, 541.
(21) Taniguchi, M.; K ataoka, T.; Suzuki, H.; Uramoto, M.; Ando, M.; Arao, K.; Magae, J.; Nishimura, T.; Otake, N.; Nagai, K. Biosci. Biotech. Biochem. 1995, 59, 2064.
(22) Osawa, T.; Suzuki, A.; Tamura, S. Agric. Biol. Chem. 1971, 35, 1966.
(23) Osawa, T.; Taylar, D.; Suzuki, A.; Tamura, S. Tetrahedron Lett. 1977, 1169.
(24) Asakawa, Y.; Takemoto, T. Phytochemistry 1979, 18, 285.
(25) Asakawa, Y.; Matsuda, R.; Takemoto, T. Phytochemistry 1980, 19, 567.
(26) Heathcock, C. H.; Graham, S. L.; Pirrung, M. C.; Plavac, F.; White, C. T. TheTotal Synthesis of Natural products, Vol. 5; ApSimons, J., Ed.; Wiley: New York, 1982, and references cited therein.
(27) The pseudoguaianolides which possess the β-oriented secondary methyl group at C-10 and the cis-fused γ-lactone moiety at the C-6, 7 position are called ambrosanolides. The references of the total syntheses of ambrosanolides are shown below: (a) Marshall, J . A.; Snyder, W. R. J. Org. Chem. 1975, 40, 1656. This paper did not report the total synthesis of ambrosanolides but described important synthetic methodology of ambrosanolides. (b) Kretchmer, R. A.; Thompson, W. J. J. Am. Chem. Soc. 1976, 98, 3379. (c) DeClercq, P.; Vandewalle, M. J. Org. Chem. 1977, 42, 3447. (d) Kok, P.; DeClercq, P.; Vandewalle, M. Bull. Soc. Chem. Belg. 1978, 87, 615. (e) Grieco, P. A.; Ohfune, Y.; Majetich, G. J. Am. Chem. Soc. 1977, 99, 7393. (f) Grieco, P. A.; Oguri, T.; Burke, S.; Rodriguez, E.; DeTitta, G. T.; Fortier, S. J . Org. Chem. 1978, 43, 4552. (g) Roberts, M. R.; Schlessinger, R. H. J. Am. Chem. Soc. 1979, 101, 7626. Quallich, G. J.; Schlessinger, R. H.J . Am. Chem. Soc. 1979, 101, 7627. (h) Demuynck, M.; DeClerca, P.; Vandewalle, M. J. Org. Chem. 1979, 44, 4863. (i) Heathcock, C. H.; Tice, C. M.; Germorth, T. C. J. Am. Chem. Soc. 1982, 104, 6081.
(28) Structure: Tapiolas, D. M.; Roman, M.; Fenical, W.; Stout, T. J.; Clardy, J. J. Am. Chem. Soc. 1991, 113, 4682. Syntheses: (a) Buszek, K. R.; Sato, N.; J eong, Y. J . Am. Chem. Soc. 1994, 116, 5511. (b) McWilliams, J. C.; Clardy, J . J . Am. Chem. Soc. 1994, 116, 8378. (c) Bach, J.; Berenguer, R.; Garcia, J .; Vilarrasa, J . Tetrahedron Lett. 1995, 3425. (d) Buszek, K. R.; J eong, Y. Tetrahedron Lett. 1995, 7189. (e) Andrus, M. B.; Argade, A. B. Tetrahedron Lett. 1996, 5049. (f) Kodama, M.; Matsushita, M.; Terada, Y.; Takeuchi, A.; Yoshio, S.; Fukuyama, Y. Chem. Lett. 1997, 117.
(29) Nozoe, T.; Takase, K.; K ato, M.; Nogi, T. Tetrahedron 1971, 27, 6023.
(30) Brady, W. T.; Hieble, J. P. J. Am. Chem. Soc. 1972, 94, 4278. (31) Brady, W. T. Synthesis 1971, 415.

Figure 1. Retrosynthetic analyses and possible synthetic routes of natural products from common synthetic intermediates.

Figure 2. Rapid tautomeric mixtures of 4-methyltropolone (1) and 7-iodo-4-methyltropolone (2).

Scheme 1

ates \mathbf{A}, \mathbf{B}, and \mathbf{C}. We also report the result of the syntheses of optically active intermediates \mathbf{B} and \mathbf{C} by the enantioselective acetylation of (\pm)-diol $\mathbf{B}(P=H)$ and subsequent oxidation of $\mathbf{B}(P=A c)$.

Results and Discussion

Regioselective Synthesis of Ethyl 8-Hydroxy-6-methyl-2-oxo-2H-cyclohepta[b]furan-3-carboxylate (6). We chose 4-methyltropolone (1) as a starting material on the basis of the above-mentioned retrosynthetic analyses and examined the regioselective synthesis of 6 via 4-methyl-2-(tosyloxy)tropone (4) (Scheme 1). The attempt of tosylation of $\mathbf{1}$ gave a 1:1 mixture of $\mathbf{4}$ and its regioisomer, 6-methyl-2-(tosyloxy)tropone. The result is well explained from the fact that $\mathbf{1}$ exists in a tautomeric mixture of $\mathbf{1 a}$ and $\mathbf{1 b}$ (Figure 2). ${ }^{32}$ The regioselective tosylation of $\mathbf{1}$ to $\mathbf{4}$ was achieved via 7-iodo-4-methyltropol one (2), which was prepared by the treatment of $\mathbf{1}$ with I_{2} in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{H}_{2} \mathrm{O}$ in 85% yield. Tosylation of $\mathbf{2}$ gave 7-iodo-4-methyl-2-(tosyl oxy)tropone

[^2]
Scheme 2

6

(3) exclusively. The result was explained by the approach of TsCl from the less hindered hydroxyl group of $\mathbf{2 a}$ in a tautomeric mixture of $\mathbf{2 a}$ and $\mathbf{2 b}$. Hydrogenolysis of $\mathbf{3}$ in methanol in the presence of $10 \% \mathrm{Pd}-\mathrm{C}$ under H_{2} gave the desired 4-methyl-2-(tosyloxy)tropone (4) in 89\% yield. Condensation of 4 with diethyl malonate in ethanol in the presence of NaOEt gave 6 regioselectively in 88% yield.

Catalytic Hydrogenation of 6. We investigated the reduction conditions of 6 to (3a, $8 a \alpha$)-ethyl 8β-hydroxy6β-methyl-2-oxooctahydro-2H-cyclohepta[b]furan-3 α-carboxylate (8b) (Scheme 2). The best result was given by catalytic hydrogenation performed at atmospheric pressure in ethanol in the presence of $\mathrm{Pt}-\mathrm{C}$ catalyst that was generated in the reaction mixture of $18 \% \mathrm{PtO}_{2}$ and 72% of activated carbon by weight on $\mathbf{6}$. Under this condition, 6 gave the desired product $\mathbf{8 b}$ in 45% yield accompanied by the minor five products, (3a $\alpha, 8 \mathrm{a} \alpha$)-ethyl 6α-methyl-2-oxooctahydro-2H-cyd ohepta[b]furan-3 α-carboxylate (7a) in 10\% yield, (3a $\alpha, 8 \mathrm{a} \alpha$)-ethyl 6 β-methyl-2-oxooctahydro-2H-cyclohepta[b]furan-3 α-carboxylate (7b) in 19\% yield, (3a $\alpha, 8 \mathrm{a} \alpha$)-ethyl 8β-hydroxy- 6α-methyl-2-oxooctahydro-2H-cyclohepta[b]furan-3 α-carboxylate (8a) in 9\% yield, (3a $\alpha, 8 \mathrm{a} \alpha$)-ethyl 6α-methyl-2,6-dioxooctahydro-2H-cyclo-hepta[b]furan-3 α-carboxylate (9a) in 4\% yield, and (3a $\alpha, 8 a \alpha$)-ethyl 6β-methyl-2,6-dioxooctahydro-2H-cyclo-hepta[b]furan-3 α-carboxylate (9b) in 9\% yield.

The minor products $\mathbf{7 a}$ and $\mathbf{7 b}$ were generated by the hydrogenolysis of $\mathrm{C}_{8}-\mathrm{OH}$ group under this condition. The stereoselectivity of the cis γ-lactone moiety at the C-3a,8a position vs the methyl group at the remote C-6 position is $2: 1$ for the 8 -deoxy derivatives $\mathbf{7 b}$ and $\mathbf{7 a}, 5: 1$ for 8-hydroxy derivatives $\mathbf{8 b}$ and $\mathbf{8 a}$, and $2: 1$ for 8-0xo derivatives $\mathbf{9 b}$ and 9 a , respectively, and the syn products were predominantly produced. The ratio of 8-deoxy derivatives 7a and 7b vs the 8-oxygenated compounds (8-hydroxy derivatives $\mathbf{8 a}$ and $\mathbf{8 b}$ plus 8-oxo derivatives $\mathbf{9 a}$ and $\mathbf{9 b}$) is $1: 2.3$. The ratio depended on the pressure of H_{2}, and the yield of 8-deoxy derivatives (7a and 7b) was increased to 50% and the yield of 8 -oxygenated derivatives (8a, 8b, 9a, and 9b) was decreased to 32\% at 30 atm.

Although the yield of desired product $\mathbf{8 b}$ was moderate and accompanied by five byproducts, $\mathbf{8 b}$ was easily separated from the mixture by column chromatography and conveniently functionalized for the syntheses of a wide variety of natural products possessing sevenmembered ring. ${ }^{33}$

Chemical Correlation and Stereochemistry of the Products of Catalytic Hydrogenation of 6. The stereochemistry of the products was determined by the following chemical transformation and the analyses of their NMR spectra. Oxidation of $\mathbf{8 a}$ and $\mathbf{8 b}$ with PCC

(8a) : $R=M e$ (III) : R $=\mathrm{H}$ NOE :

Figure 3. Stereostructure of compounds III, 8a, 8b, 9a, and $\mathbf{9 b}$ and the results of their NOE experiments.
gave 9a and 9b in 96\% and 91\% yields, respectively. The ster eochemi stry of the ring junction of these compounds was deduced to be cis from the coupling constant between $\mathrm{C}_{3 \mathrm{a}}-\mathrm{H}$ and $\mathrm{C}_{8 \mathrm{a}}-\mathrm{H}$ which was smaller than those of transfused compounds ${ }^{34}$ and confirmed by the measurement of the NOE between $\mathrm{C}_{3 \mathrm{a}}-\mathrm{H}$ and $\mathrm{C}_{8 a}-\mathrm{H}$ (Figure 3).

The stereochemistry of the substituent at C-3 of these compounds was deduced to be α-orientation by the fact that NOE between $\mathrm{C}_{3}-\mathrm{H}$ and $\mathrm{C}_{3 a}-\mathrm{H}$ was not observed. The stereochemistry of the substituent at C-3 could not be determined by the coupling constant because this value was largely influenced by the mode of substitution at C-8 and the conformation of seven-membered as well as γ-lactone rings. ${ }^{34}$ The stereochemistry of the substituent at $\mathrm{C}-3$ of $\mathbf{8 a}$ and $\mathbf{8 b}$ was finally determined by the fact that the acid (HBr in acetic acid) or base (NaOEt in EtOH) treatment of $\mathbf{8 a}$ and $\mathbf{8 b}$ gave the recovery of starting material intactly. These experimental results strongly suggested that the compounds $\mathbf{8 a}$ and $\mathbf{8 b}$ were thermodynamically more stable than the corresponding C_{3}-epimers. The inspection of Dreiding model showed that the compounds possessing the substituent of α-configuration at $\mathrm{C}-3$ were more stable than the corresponding β-epimers which had serious steric interaction between the C_{3}-substituent and the $\mathrm{C}_{3 \mathrm{a}}-\mathrm{C}_{4}$ bond.

The stereochemistry of the hydroxyl group at C-8 of $\mathbf{8 a}$ and $\mathbf{8 b}$ was deduced to be the β-configuration from the values of the coupling constant between $\mathrm{C}_{8}-\mathrm{H}$ and $\mathrm{C}_{8 \mathrm{a}}-\mathrm{H}(\mathrm{J}=1.5$ and 1.9 Hz , respectively) and the result of NOE experiments.
The stereochemistry of the methyl group at the C-6 position of $\mathbf{9 b}$ was deduced to be the β-orientation from the fact that an NOE was observed between $\mathrm{C}_{6}-\mathrm{H}$ and $\mathrm{C}_{8 \mathrm{a}}-\mathrm{H}$. The result of this NOE experiment and the chemical correlation between $\mathbf{8 b}$ and $\mathbf{9 b}$ suggested that the stereochemistry of the C-6 methyl group of $\mathbf{8 b}$ was also the β-orientation. Since two pairs of compounds, (8a, $\mathbf{8 b}$) and (9a, 9b), are stereoisomeric concerning the methyl group at C-6 from the result of the analyses of ${ }^{1}$ H NMR spectra mentioned above, the C-6 methyl groups of $\mathbf{8 a}$ and $\mathbf{9 a}$ must be in the α-configuration, opposite to those of $\mathbf{8 b}$ and $\mathbf{9 b}$. The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{I I I}{ }^{34}$ resembles closely that of $\mathbf{8 a}$ and differs from that of $\mathbf{8 b}$. This observation as well as the result of NOE experi-

[^3]Scheme 3

ments suggests that the conformation of the sevenmembered ring of $\mathbf{8 a}$ is the chair form, the same as III, and that of $\mathbf{8} \mathbf{b}$ is the boat form as depicted in Figure 3.

The stereochemistries of $\mathbf{7 a}$ and $\mathbf{7 b}$ were determined by chemical correlation with 8a and $\mathbf{8 b}$ (Scheme 3). Hydrolysis of an inseparable mixture of 7a and 7b (1:2) with a 1 M aqueous solution of KOH in ethanol followed by treatment with $\mathrm{Et}_{2} \mathrm{NH}$ and 35% formalin in acetic acid gave α-methylene γ-lactones 11a and 11b in 23\% and 48% yields. Reduction of 11a with NaBH_{4} gave an epimeric mixture of α-methyl γ-lactones, 12a and 12b, in 17% and 57% yields, respectively. Since the treatment of 12b with 1 M NaOMe in MeOH gave a 9.1:1 mixture of 12a and 12b, the former was found to be the thermodynamically more stable 3α-methyl γ-lactone derivative.

Analogously, reduction of 11b with NaBH_{4} in MeOH gave 13b as the sole isolated product in 89% yield. Since the treatment of $\mathbf{1 3 b}$ with 1 M NaOMe in MeOH gave a 14.2:1 mixture of 13a and 13b, it was found that 13a was the thermodynamically more stable 3α-isomer and 13b was the thermodynamically less stable 3β-isomer. Catalytic hydrogenation of $\mathbf{1 7 b}$ in a solution of benzene and ethanol in the presence of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}$ gave 13b. From this chemical correlation, the stereochemistry of the methyl group at $\mathrm{C}-6$ of $\mathbf{7 a}$ and $\mathbf{7 b}$ was assigned to be the α - and β-orientation, respectively.

Syntheses of the Common Synthetic Intermediates of Types A, B, and C from $\mathbf{8 b}$. Treatment of $\mathbf{8 b}$ with 2.8 molar equiv of NaH in THF in the presence of 0.03 molar equiv of imidazole followed by 5 molar equiv of CS_{2} and CH_{3} l resulted in concomitant introduction of the methyl group at C-3 and transformation of the C-8 hydroxyl group into a (methylthio)(thiocarbonyl)oxy group to give xanthate ester 14 (Scheme 4) in 91\% yield. ${ }^{35}$ The stereochemistry of the newly introduced methyl group at C-3 was deduced to be the α-configuration by the consideration that the reagent approached from the less hindered convex α-face of the enolate anion of the

[^4] 1 1975, 1574.

Figure 4. NOESY experiment of $\mathbf{1 5}$ at 500 MHz .

Scheme 4

17b: 57%
$1 \mathrm{M} \mathrm{NaOMe} / \mathrm{MeOH}, 98 \%$
$17 \mathrm{~b}: 17 \mathrm{a}=1: 8.8$
substrate and finally confirmed by an NOESY experiment (Figure 4).
The pyrolysis of $\mathbf{1 4}$ at $200^{\circ} \mathrm{C}$ under reduced pressure gave the desired 7,8-unsaturated γ-lactone 15 regioselectively in 94% yield. Hydrolysis of 15 with a 1 M aqueous solution of KOH in ethanol and successive thermal decarboxylation of the carboxylic acid $\mathbf{1 6}$ under reduced pressure gave a mixture of stereoisomers concerning $\mathrm{C}-3$, 17a and 17b, in 34% and 57% yields, respectively. Since the treatment of 17b with 1 M NaOMe in methanol gave an 8.8:1 mixture of 17a and 17b, it was found that 17a was the thermodynamically more stable 3α-methyl γ-lactone and 17b was the thermodynami cally less stable 3β-methyl γ-lactone.

Reduction of 17b with LiAlH_{4} in ether gave the diol 18 in 98% yield (Scheme 5). Acetylation of $\mathbf{1 8}$ with $\mathrm{Ac}_{2} \mathrm{O}$ and pyridine gave the desired monoacetate 20 in 58\% yield accompanied by the undesired diacetate 19 in 23\% yield. Since the latter was hydrolyzed with 1 M KOH in ethanol to give $\mathbf{1 8}$ in a quantitative yield, the undesired diacetate $\mathbf{1 9}$ could be recycled to $\mathbf{2 0}$. Oxidation of $\mathbf{2 0}$ with MnO_{2} in CHCl_{3} gave the enone 21 in 95\% yield. No change in configuration was observed in these three steps, and the stereochemistry at C-1' of 18, 19, 20, and 21 is the β-configuration.

Analogously reduction of 17a with LiAlH_{4} in ether gave the diol 22 in 92\% yield. Acetylation of $\mathbf{2 2}$ with $\mathrm{Ac}_{2} \mathrm{O}$ and pyridine gave the desired monoacetate 24 in 66\% yield accompanied by the undesired diacetate 23 in 32\% yield. The latter was recycled to $\mathbf{2 4}$ by hydrolysis and subsequent acetylation of resulting 22. Oxidation of $\mathbf{2 4}$ with MnO_{2} in CHCl_{3} gave the enone 25 in 98% yield. The stereochemistry at $\mathrm{C}-\mathbf{1}^{\prime}$ of 22, 23, 24, and 25 is the α-configuration and opposite to that of the corresponding 18, 19, 20, and 21.
Then we attempted the selective silylation of the primary hydroxyl group of 22. Silylation of $\mathbf{2 2}$ with t-BuMe2SiCl in DMF in the presence of imidazole gave

Scheme 5

the desired monosilyl ether 27 in 91\% yield accompanied by disilyl ether $\mathbf{2 6}$ in 8% yield. Oxidation of $\mathbf{2 7}$ with MnO_{2} in CHCl_{3} gave the desired enone $\mathbf{2 8}$ in a quantitative yield.

Syntheses of the Optically Active Compounds (+)- and (-)-22, (+)- and (-)-24, and (+)- and (-)-25. The optical resolution of (\pm)-22 was achieved by enzymatic acetylation (Scheme 6). The most promising results were obtained with Lipase PS in an alcohol-lipase-sieves ratio (3.7:1.2:1) in vinyl acetate solution. The resolution was carried out at $23^{\circ} \mathrm{C}$, and the diolmonoacetate ratio was monitored by GC. The enantiomeric excess (ee) of the diol 22 and the monoacetate 24 in the reaction course was determined after the separation of a part of the reaction mixture by HPLC. The monoacetate (+)-24 ($[\alpha]^{25}{ }_{\mathrm{D}}+46.1,93 \%$ ee) and the diol $(-)-22\left([\alpha]^{25}{ }_{\mathrm{D}}-13.0,70 \%\right.$ ee) were obtained in 48% and 52% yields, respectively, after 4.5 h . If we desired higher optical purity of diol (-)-22, we could get the desired (-)22 ($[\alpha]^{25}{ }_{\mathrm{D}}-16.5,89 \%$ ee) in 44% yield by the prol ongation of the reaction time accompanied by monoacetate (+)-24 ($[\alpha]^{25} \mathrm{D}+38.0,77 \%$ ee) in 52% yield. The absolute configuration and the optical yield were determined as follows.
(-)-22 ([$\alpha]^{25} \mathrm{D}-16.5$) was converted to the corresponding (S)-(-)-MTPA ester, (-)-29, according to Mosher's method ${ }^{36}$ (Scheme 6). In the NMR spectra, the magnitude of lanthanide induced shift by Eu(fod) $)_{3}$ for the OMe group of the (S)-(-)-MTPA ester of (1'S)-carbinol is expected to be larger than that of (1'R)-carbinol, since the (S)-(-)-MTPA ester of (1'S)-carbinol, (-)-30, forms a

[^5]Scheme 6

$(+)-22,[\alpha]^{25}{ }_{D}+15.6$

more stable $\mathrm{Eu}(\mathrm{fod})_{3}$ complex than those of the $(\mathrm{S})-(-)$ MTPA ester of (1'R)-carbinol, (-)-29. ${ }^{37}$ From the chemical shift and integration values of -OMesignals of (S,R) and (S,S) M osher's esters, the stereochemistry of C-1' and the enantiomeric excess of $(-)$ - 22 were determined to be R and 89% ee. Since the relative stereochemistry of (\pm)22 has already been determined, the absolute configurations of (+)- and (-)-22 were established as depicted in Scheme 6. This conclusion was also supported by the observed positive sign of the CD curve of p-bromobenzoate of (+)-24, which is in agreement with the expected sign from the exiton chirality rule applied to cyclic allylic al cohols. ${ }^{38}$
The acetate, $(+)-\mathbf{2 4}\left([\alpha]^{25} \mathrm{D}+38.0\right)$, was hydrolyzed by a 1 M aqueous solution of KOH to give (+)-22 ($[\alpha]^{25} \mathrm{D}$ +15.6), which was converted to the corresponding (S)-(-)-MTPA ester, (-)-30. By the analogous method mentioned above, the stereochemistry of $\mathrm{C}-1^{\prime}$ and the enantiomeric excess of (+)-24 were determined to be S and 77% ee.
Oxidation of (+)-24, which was obtained by the abovementioned enzymatic acetylation, with MnO_{2} in CHCl_{3} gave (-)-25 ([$\alpha]^{20}{ }_{D}-108.4$) in 91\% yield (Scheme 7). Analogously, acetylation of (-)-22, which was obtained by the enzymatic acetylation mentioned above as the recovered diol, and subsequent oxidation of the resulting monoacetate (-)-24 ([$\alpha]^{25}{ }_{\mathrm{D}}-45.3$) with MnO_{2} in CHCl_{3} gave (+)-25 ($[\alpha]^{20}{ }_{D}+129.6$) in 55% overall yield.
Biological Activities. 1. Cell Growth Inhibitory Activity of Compounds to P-388 Lymphocytic Leukemia. ${ }^{39}$ The compounds 11a and 11b showed signifi-

[^6]
Scheme 7

cant cell growth inhibitory activity against murine lymphocytic leukemia ($\mathrm{P}-388$) in vitro. The growth inhibition ratios of 11a and 11b are 50\% and 69\% at a concentration of $1 \mu \mathrm{~g} / \mathrm{mL}$, respectively.
2. Control of Crop Diseases. ${ }^{40}$ The preventive and curative activities in controlling crop diseases were examined by pot test. The α-methylene γ-lactones 11a and 11b showed significant preventive activities in controlling damping-off of cucumber caused by Pythium aphanidermatum. The evaluation of disease control is $70-80 \%$ for 11a and 100% for $\mathbf{1 1 b}$ at 500 ppm .
3. Herbicide Test. ${ }^{41}$ The α-methylene γ-lactone 11b showed significant growth inhibitory activity against Echinochloa flumentacea (J apanese millet) and Avena sativa (oat) in field. The evaluation of the growth inhibition was 100% for E. flumentacea and $70-80 \%$ for A. sativa at a concentration of 8 g per $100 \mathrm{~m}^{2}$ by posttreatment.

Experimental Section

General Experimental Procedure. All melting points are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 200 MHz and ${ }^{13} \mathrm{C}$ NMR spectra at 50 MHz in CDCl_{3} unless otherwise stated. The assignments of ${ }^{1} \mathrm{H}$ NMR spectra were determined by decoupling and $\mathrm{H}-\mathrm{H}$ COSY experiments. The assignments of ${ }^{13} \mathrm{C}$ NMR spectra were determined by DEPT, $\mathrm{C}-\mathrm{H}$ COSY, HMQC, and HMBC experiments. Reactions were run under an atmosphere of N_{2} or Ar. THF and ether weredistilled from sodium benzophenone ketyl. CHCl_{3} was dried over CaCl_{2} and distilled. Benzene was dried over CaCl_{2}, distilled, and stored in a bottle with Na wire equipped with a mercury seal. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, DMF , and pyridine were distilled from CaH_{2}. MeOH and EtOH were distilled from $\mathrm{Mg}(\mathrm{OMe})_{2}$ and $\mathrm{Mg}(\mathrm{OEt})_{2}$, respectively. To describe HPLC conditions, the column, solvent, and flow rate are designated in this order. The column
(39) Murine lymphocytic leukemia cells (p388) were incubated with compounds at $37{ }^{\circ} \mathrm{C}$ in a humidified atmosphere of $5 \% \mathrm{CO}_{2}$ for 48 h . After incubation, the cell number was counted with a Coulter counter and the cell growth inhibition ratio (\%) was calculated according to

$$
\text { cell growth inhibition ratio }=\left(1-\frac{T-C_{0}}{C-C_{0}}\right) \times 100
$$

where $T=$ cell count after culture with compound, $\mathrm{C}=$ cell count after culture without compound, and $\mathrm{C}_{0}=$ cell count at the start of culture.
(40) Test samples, which were formulated as emulsifiable in water, were applied by spraying to the plants or drenching to soil before or after incubation. The plants were inoculated with spores or hypa of fungal pathogens. After incubation, disease severity of test plants was observed under desirable conditions for $4-15$ days. The tested crop diseases are as follows; blast of rice, sheath blight of rice, powdery mildew of wheat, damping off of cucumber, dawny mildew of grape, late blight of tomato, scab of apple.
(41) In 8-10 days after sowing, test samples, which were formulated as emulsifiable in water, were applied by spraying to the plants and the degree of the growth inhibition of plants was observed.
codes are as follows: A, $30 \times 2 \mathrm{~cm}$ i.d. stainless column packed with $15-25 \mu \mathrm{~m}$ silica gel; B, $25 \times 0.8 \mathrm{~cm}$ i.d. stainless column packed with $10 \mu \mathrm{~m}$ silica gel; C, $30 \times 1 \mathrm{~cm}$ i.d. glass column packed with $10 \mu \mathrm{~m}$ silica gel; D, $25 \times 0.4 \mathrm{~cm}$ i.d. stainless column packed with $10 \mu \mathrm{~m}$ silica gel. Silica gel (230-400 mesh) was employed for flash chromatography, and 70-230 mesh silica gel was employed for column chromatography. To describe the conditions of column and flash chromatographies, the weight of silica gel, column i.d., and solvent are designated in this order.

7-I odo-4-methyltropolone (2). Into a stirred solution of 4-methyltropol one ($50 \mathrm{~g}, 0.367 \mathrm{~mol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(104.7 \mathrm{~g}, 0.754$ $\mathrm{mol})$ in $\mathrm{H}_{2} \mathrm{O}(750 \mathrm{~mL})$ was slowly added a solution of I_{2} (95.3 $\mathrm{g}, 0.376 \mathrm{~mol})$ and $\mathrm{KI}(102.8 \mathrm{~g}, 0.616 \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at rt for 20 h and filtered. The crystalline material separated by filtration was dissol ved in $\mathrm{CHCl}_{3}(500 \mathrm{~mL})$ and stirred for 1 h with a mixture of NaHSO_{3} ($3.5 \mathrm{~g}, 19.7 \mathrm{mmol}$), $6 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(290 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$. The chloroform layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was dissolved in $\mathrm{MeOH}(200 \mathrm{~mL})$ and treated with activated carbon (10 g) at the refluxing temperature. The mixture was filtered and concentrated to give spectroscopically pure $2(46.0 \mathrm{~g}, 48 \%)$.

The aqueous layer was also treated with a mixture of $\mathrm{NaHSO}_{3}(10.0 \mathrm{~g}, 56.2 \mathrm{mmol})$ and $6 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(200 \mathrm{~mL})$ at pH $1-2$ and extracted with CHCl_{3}. The extracts were treated in the above-mentioned manner to give additional $\mathbf{2}$ ($35.8 \mathrm{~g}, 37 \%$) as a spectroscopically pure crystalline material.

The analytical sample of $\mathbf{2}$ was obtained by recrystallization from $\mathrm{Et}_{2} \mathrm{O}$ as pale brown prisms: mp $118-120^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right)$ 3012, $1612 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.45$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{4}-\mathrm{Me}$), $6.59(1 \mathrm{H}$, dd, J $\left.=10.6,1.0 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}\right), 7.26\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}_{3}-\mathrm{H}\right), 8.32(1 \mathrm{H}$, $\left.\mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.7\left(\mathrm{q}, \mathrm{C}_{4}-\mathrm{Me}\right), 106.5(\mathrm{~s}$, C-7), 121.5 (d, C-3), 127.8 (d, C-5), 147.9 (d, C-6), 150.1 (s, C-4), 161.6 (s, C-2), 172.2 (s, C-1). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{I}: \mathrm{C}$, 36.67; H, 2.69. Found: C, 36.86; H, 2.69.

7-I odo-4-methyl-2-(tosyloxy)tropone (3). Into a stirred solution of $2(90.0 \mathrm{~g}, 0.343 \mathrm{~mol})$ in pyridine (850 mL) was added $\mathrm{TsCl}(115.5 \mathrm{~g}, 0.515 \mathrm{~mol})$ at $0^{\circ} \mathrm{C}$. The sol ution was stirred at $0^{\circ} \mathrm{C}$ for 3 h and then at rt for 11 h and poured into cold water (10 L) under vigorous stirring. The pale brown crystalline material was collected by filtration under reduced pressure and dried in a desiccator under reduced pressure to give spectroscopically pure 3 ($136.2 \mathrm{~g}, 0.327 \mathrm{~mol}, 95 \%$) as a crystalline material. A part of this crystalline material was recrystallized from $\mathrm{Et}_{2} \mathrm{O}$ to give pale brown microcrystals: mp $140-142{ }^{\circ} \mathrm{C}$; IR (KBr) 1604, 1380, 1360, $1182 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta 2.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{4}-\mathrm{Me}\right), 2.46(3 \mathrm{H}, \mathrm{s}, \mathrm{Ts}-\mathrm{Me}), 6.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $\left.9.6,1.3 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}\right), 7.36(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{~m}-\mathrm{Hs}$ of Ph$), 7.44$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.3 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 7.94(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}$, o-Hs of Ph), $8.38\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.6 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{H}\right.$); ${ }^{13} \mathrm{C}$ NMR $\delta 21.8$ (q, Ts$\mathrm{Me}), 26.2$ ($\mathrm{q}, \mathrm{C}_{4}-\mathrm{Me}$), 122.9 ($\mathrm{s}, \mathrm{C}-7$), 128.7 (d, C-2' of Ph), 129.7 (d, C-3' of Ph), 131.6 (d, C-5), 132.9 (s, C-1' of Ph), 133.1 (d, $\mathrm{C}-3$), 143.2 ($\mathrm{s}, \mathrm{C}-4$), 145.7 ($\mathrm{s}, \mathrm{C}-4^{\prime}$ of Ph), 146.9 (d, C-6), 147.1 (s, C-2), 174.6 (s, C-1). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{SI}: \mathrm{C}, 43.28$; H, 3.14. Found: C, 43.55; H, 3.26.

4-Methyl-2-(tosyloxy)tropone (4). A mixture of 3 (50.0 $\mathrm{g}, 0.120 \mathrm{~mol}), 10 \% \mathrm{Pd}-\mathrm{C}(5.0 \mathrm{~g}), \mathrm{NaOAc}(15.1 \mathrm{~g}, 0.180 \mathrm{~mol})$, and $\mathrm{MeOH}(1.5 \mathrm{~L})$ was stirred vigorously under 1 atm of H_{2}. Hydrogen uptake ($3.2 \mathrm{~L}, 0.14 \mathrm{~mol}$) was ceased after 80 min , and the mixture was filtered through Celite. The filtrate was concentrated to 300 mL and poured into water (1.3 L). The crystalline material was filtered under reduced pressure to give spectroscopically pure 4 ($31.1 \mathrm{~g}, 89 \%$) as a pale brown crystalline material, a part of which was recrystallized from $\mathrm{Et}_{2} \mathrm{O}$ to give pale brown microcrystals: mp $110^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr})$ 1636, 1602, 1584, 1366, $1192 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta 2.39$ ($3 \mathrm{H}, \mathrm{s}$, $\mathrm{C}_{4}-\mathrm{Me}$), $2.45(3 \mathrm{H}, \mathrm{s}, \mathrm{Ts}-\mathrm{Me})$, $6.94(1 \mathrm{H}$, ddd, J $=8.0,2.8,1.4$ $\left.\mathrm{Hz}, \mathrm{C}_{5}-\mathrm{H}\right), 7.02\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,2.8 \mathrm{~Hz}, \mathrm{C}_{7}-\mathrm{H}\right), 7.11(1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{J}=12.0,8.0 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{H}\right), 7.36(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{~m}-\mathrm{Hs}$ of Ph$)$, $7.39\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 7.95(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{o}-\mathrm{Hs}$ of Ph); ${ }^{13} \mathrm{C}$ NMR $\delta 21.8$ (q, Ts-Me), 26.5 ($q, \mathrm{C}_{4}-\mathrm{Me}$), 128.6 (d , $\mathrm{C}-2^{\prime}$ of Ph), 129.6 ($\mathrm{d}, \mathrm{C}-3^{\prime}$ of Ph), 133.0 (d, C-5), 133.5 ($\mathrm{s}, \mathrm{C}-1^{\prime}$ of Ph), 133.8 (d, C-3), 136.6 (d, C-7), 138.8 (d, C-6), 142.3 (s,

C-4), 145.4 (s, C-4' of Ph), 153.8 (s, C-2), 178.8 (s, C-1). Anal Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 62.05 ; \mathrm{H}, 4.86$. Found: C, 61.91; H, 4.86.

Ethyl 6-Methyl-2-oxo-2H-cyclohepta[b]furan-3-carboxylate (5) and Ethyl 8-Hydroxy-6-methyl-2-oxo-2H-cyclo-hepta[b]furan-3-carboxylate (6). To a stirred solution of $4(44.0 \mathrm{~g}, 0.152 \mathrm{~mol})$ and diethyl malonate ($45.3 \mathrm{~mL}, 0.300$ mol) in EtOH (200 mL) was added a 1 M solution of NaOEt in EtOH ($300 \mathrm{~mL}, 0.300 \mathrm{~mol}$). The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 20 min , stored in a refrigerator overnight, poured into water (2 L), and extracted with benzene. The combined extracts were washed with a saturated aqueous solution of NaCl , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to 50 mL . The residue was diluted with ether to give spectroscopically pure 5 (1.50 g, 4\%). A part of 5 was recrystallized from MeOH to give yellow prisms: mp $144{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{4}$: C , 67.23; H, 5.21. Found: C, 67.29; H, 5.29.

The aqueous layer was adjusted at pH 3 with $6 \mathrm{M} \mathrm{HCl}(90$ mL) to form a yellow crystalline material, which was separated by filtration, washed with water, and dried to give spectroscopically pure 6 ($32.9 \mathrm{~g}, 88 \%$), a part of which was recrystallized from EtOH to give yellow microcrystals: mp $186^{\circ} \mathrm{C}$; IR (KBr) 3460, 1745, 1734, $1684 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }^{2}$) $\delta 1.29$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{Et}-\mathrm{CH}_{3}\right), 2.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6}-\mathrm{Me}\right), 4.23(2 \mathrm{H}, \mathrm{q}$, $\mathrm{J}=7.1 \mathrm{~Hz},{\left.\mathrm{Et}-\mathrm{CH}_{2}\right), 7.48\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}_{7}-\mathrm{H}\right), 7.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=}^{2}$ $11.4 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}$), $8.62\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.4 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right)$; ${ }^{13} \mathrm{C} \mathrm{NMR}$
 88.8 (s, C-8a), 129.3 (d, C-4), 130.4 (d, C-7), 138.9 (d, C-5), 141.9 (s), 146.2 ($\mathrm{s}, \mathrm{C}-6$), 148.7 (s), 150.7 (s$), 163.6$ (s), 164.1 (s). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{5}$: $\mathrm{C}, 62.90 ; \mathrm{H}, 4.87$. Found: $\mathrm{C}, 63.10 ; \mathrm{H}$, 4.94.

Catalytic Hydrogenation of 6. A mixture of 6 (10.0 g , $40.3 \mathrm{mmol}), \mathrm{PtO}_{2}(1.8 \mathrm{~g})$, and activated carbon (7.2 g) in EtOH (590 mL) was stirred vigorously under 1 atm of hydrogen. Hydrogen uptake (6.5 L) ceased after 2 h and 50 min , and the mixture was filtered. The filtrate was concentrated under reduced pressure to give an oily crude product (ca. 12 g), which was subsequently chromatographed over silica gel [$350 \mathrm{~g} ; 6.5$ cm i.d.; EtOAc-hexane (2:8)].

The first fraction gave an inseparable 1:2 mixture of (\pm) (3a $\alpha, 8 \mathrm{a} \alpha$)-ethyl 6α-methyl-2-oxooctahydro-2H-cyclohepta[b]fu-ran-3 α-carboxylate (7a) and (\pm)-(3a $\alpha, 8 a \alpha)$-ethyl 6β-methyl-2-oxooctahydro-2H-cyclohepta[b]furan-3 α-carboxylate (7b) (2.8 $\mathrm{g}, 29 \%$) as a colorless oil. The elemental analysis of the mixture was performed instead of those of pure $\mathbf{7 a}$ and $\mathbf{7 b}$. Anal. Cal cd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4}: \mathrm{C}, 64.98 ; \mathrm{H}, 8.39$. Found: $\mathrm{C}, 64.77$; H, 8.62.

The second fraction gave spectroscopically pure (\pm)-(3a $\alpha, 8 \mathrm{a} \alpha)$ ethyl 8β-hydroxy-6 α-methyl-2-oxooctahydro-2H-cyclohepta[b]-furan-3 -carboxylate (8a) ($970 \mathrm{mg}, 9 \%$) as a crystalline material, which was recrystallized from a mixture of EtOAchexane to give col orless needles: $\mathrm{mp} 78-80^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{5}$: C, 60.92; $\mathrm{H}, 7.87$. Found: $\mathrm{C}, 60.80 ; \mathrm{H}, 8.16$.

The third fraction gave a 1:2 mixture of (\pm)-(3a $\alpha, 8 \mathrm{a} \alpha$)-ethyl 6α-methyl-2,8-di oxooctahydro-2H-cyclohepta[b]furan-3 α-carboxylate (9 a) and (\pm)-(3a $\alpha, 8 \mathrm{a} \alpha$)-ethyl 6β-methyl-2,8-dioxooc-tahydro-2H-cyclohepta[b]furan-3 -carboxylate (9b) (1.33 g, 13%) as a crystalline material. The repeated separation of this mixture by HPLC [column D; EtOAc-hexane ($3: 7$); 3.0 mL / min] gave pure $\mathbf{9 b}$ (faster running) and $\mathbf{9 a}$ (slower running). 9a: colorless prisms $\left(\mathrm{CHCl}_{3}\right)$: mp $55-57^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5}$: C, 61.41; $\mathrm{H}, 7.13$. Found: $\mathrm{C}, 61.11 ; \mathrm{H}, 7.11 .9 \mathrm{9}$: colorless needles (EtOAc-hexane): mp $71-72{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5}$: C, 61.41; $\mathrm{H}, 7.13$. Found: $\mathrm{C}, 61.13 ; \mathrm{H}$, 7.09 .

The fourth fraction gave spectroscopically pure (\pm)-(3a $\alpha, 8 \mathrm{a} \alpha)$ ethyl 8β-hydroxy- 6β-methyl-2-oxooctahydro-2H-cycl ohepta[b]-furan-3 α-carboxylate (8 b) ($4.61 \mathrm{~g}, 45 \%$) as col orless plates (EtOAc-hexane): $\mathrm{mp} 58-60^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) 3500,1782,1736$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\delta 0.99\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{Me}\right)$, $1.32(3 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Et}-\mathrm{CH}_{3}$), $3.16(1 \mathrm{H}$, dddd, $\mathrm{J}=8.5,6.1,6.1,4.7$ $\left.\mathrm{Hz}, \mathrm{C}_{3 \mathrm{a}}-\mathrm{H}\right), 3.46\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 4.06(1 \mathrm{H}, \mathrm{brd}$, J $\left.=8.6 \mathrm{~Hz}, \mathrm{C}_{8}-\mathrm{H}\right), 4.26\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz},{\left.\mathrm{Et}-\mathrm{CH}_{2}\right), 4.95(1 \mathrm{H} \text {, }}^{2}\right.$ dd, J $\left.=8.5,1.9 \mathrm{~Hz}, \mathrm{C}_{8 \mathrm{a}}-\mathrm{H}\right)$; ${ }^{13} \mathrm{C}$ NMR $\delta 14.1\left(\mathrm{q}, \mathrm{Et}-\mathrm{CH}_{3}\right), 22.9$ ($\mathrm{q}, \mathrm{C}_{6}-\mathrm{Me}$), 27.7 (t), 31.7 (t), 32.3 (d, C-6), 39.4 (t$), 39.8$ (d, C-3a),
53.5 (d, C-3), 62.3 (t, Et-CH 2), 71.5 (d, C-8), 85.5 (d, C-8a), 167.9 (s), 171.8 (s). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{5}: \mathrm{C}, 60.92 ; \mathrm{H}, 7.87$. Found: C, 60.68; H, 8.21.
(\pm)-(3a $\alpha, 8 \mathrm{a} \alpha)$-E thyl 8 β-((Methylthio)(thiocarbonyl)-oxy)-3 $\alpha, 6 \beta$-dimethyl-2-oxooctahydro-2H-cyclohepta[b]fu-ran-3 $\boldsymbol{\beta}$-carboxylate (14). A solution of $\mathbf{8 b}$ ($930 \mathrm{mg}, 3.63$ mmol) in THF (45 mL) containing imidazole ($7.6 \mathrm{mg}, 0.11$ mmol) was slowly added to NaH [prepared from $55 \% \mathrm{NaH}$ dispersion in mineral oil ($455 \mathrm{mg}, 1.02 \mathrm{mmol}$) by being washed with pentane] and stirred at $40^{\circ} \mathrm{C}$ for 2.5 h . Then $\mathrm{CS}_{2}(1.11$ $\mathrm{mL}, 18.3 \mathrm{mmol}$) was added into the mixture, and the solution was stirred at $50^{\circ} \mathrm{C}$ for 30 min . Finally Mel ($1.14 \mathrm{~mL}, 18.2$ mmol) was added into the mixture, and the solution was stirred at $50^{\circ} \mathrm{C}$ for 30 min . After cooling, the reaction was quenched by the addition of AcOH $(0.6 \mathrm{~mL})$. The mixture was worked up as usual to give an oily crude product (1.43 g), which was chromatographed over silica gel [45 g ; 3.1 cm i.d.; EtOAchexane (3:7)] to give 14 ($1.19 \mathrm{~g}, 91 \%$) as colorless prisms (ether-hexane): $\mathrm{mp} 107-108^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) 1790,1734 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.97\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{Me}\right), 1.32(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, \mathrm{Et}-\mathrm{CH}_{3}$), $1.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{3}-\mathrm{Me}\right), 1.89\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{7}-\mathrm{H}\right), 2.08$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{7}-\mathrm{H}\right), 2.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCS}_{2} \mathrm{CH}_{3}\right), 2.63\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{3 \mathrm{a}}-\mathrm{H}\right)$, $4.25\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=11.7,7.2 \mathrm{~Hz}, \mathrm{Et}-\mathrm{CH}_{2}\right), 4.29(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=$ $11.7,7.2 \mathrm{~Hz}, \mathrm{Et}-\mathrm{CH}_{2}$), $4.99\left(1 \mathrm{H}, \mathrm{br} d, \mathrm{~J}=6.7 \mathrm{~Hz}, \mathrm{C}_{8 \mathrm{a}}-\mathrm{H}\right), 5.95$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.4,1.7 \mathrm{~Hz}, \mathrm{C}_{8}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 14.0\left(\mathrm{q},{\left.\mathrm{Et}-\mathrm{CH}_{3}\right) \text {, }}^{2}\right.$, 18.9 (q, $\mathrm{C}_{3}-\mathrm{Me}$), 21.5 ($\mathrm{q}, \mathrm{C}_{6}-\mathrm{Me}$), 22.7 ($\mathrm{q}, \mathrm{OCS}_{2} \mathrm{CH}_{3}$), 27.2 (t), 31.6 (t), 33.1 (d, C-6), 35.1 (t), 47.2 (d, C-3a), 55.0 (s, C-3), 61.8 (t, Et-CH 2), 80.9 (d), 81.4 (d), 169.1 (s, $\mathrm{CO}_{2} \mathrm{Et}$), 174.8 (s, C-2), 215.2 (s, $\mathrm{OCS}_{2} \mathrm{CH}_{3}$). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~S}_{2}$: C, 53.31; H, 6.71. Found: C, 53.76; H, 6.92.
(\pm)-(3a $\alpha, 8 \mathrm{a} \alpha$) Ethyl 3 $\alpha, 6 \beta$-Dimethyl-2-oxo-3,3a,4,5,6,8a-hexahydro-2H-cyclohepta[b]furan-3 β-carboxylate (15). Xanthate $\mathbf{1 4}(2.14 \mathrm{~g}, 5.94 \mathrm{mmol})$ in Kügelrohr distillation apparatus was heated at $200{ }^{\circ} \mathrm{C}$ for 10 h under reduced pressure (40 Torr) and then distilled at this temperature at 2 Torr to give a pale yellow oil, which was purified by flash chromatography [$15 \mathrm{~g} ; 2.2 \mathrm{~cm}$ i.d.; EtOAc-hexane (1:9)] to give a crystalline material, which was recrystallized from a mixture of EtOAc-hexane to give 15 ($1.41 \mathrm{~g}, 94 \%$) as colorless needles: mp 53-54 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) 1775,1742 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} N M R$ $\delta 1.06\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{Me}\right), 1.27(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, Et-CH ${ }_{3}$), $1.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{3}-\mathrm{Me}\right), 2.37\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6}-\mathrm{H}\right), 2.41(1 \mathrm{H}$, ddd, J = 13.0, 9.2, $\left.4.0 \mathrm{~Hz}, \mathrm{C}_{3 \mathrm{a}}-\mathrm{H}\right), 4.14(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=11.0,7.2$ $\mathrm{Hz}, \mathrm{Et}-\mathrm{CH}_{2}$), 4.21 ($1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=11.0,7.2 \mathrm{~Hz}, \mathrm{Et}-\mathrm{CH}_{2}$), 5.34 (1 H , ddd, J $=10.5,5.5,3.0 \mathrm{~Hz}, \mathrm{C}_{7}-\mathrm{H}$), 5.40 (1 H , dddd, J = 9.2, 3.0, 3.0, $1.4 \mathrm{~Hz}, \mathrm{C}_{8 \mathrm{a}}-\mathrm{H}$), $5.64(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=10.5,3.3,2.2 \mathrm{~Hz}$, $\mathrm{C}_{8}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 14.0$ (q, Et-CH ${ }_{3}$), 20.6 ($\mathrm{q}, \mathrm{C}_{3}-\mathrm{Me}$), 21.4 (q , $\mathrm{C}_{6}-\mathrm{Me}$), 22.8 (t), 29.2 (t), 31.3 (d, C-6), 47.3 (d, C-3a), 54.1 (s , $\mathrm{C}-3$), 61.7 (t, Et-CH ${ }_{2}$), 78.5 (d, C-8a), 127.2 (d, C-8), 132.8 (d, $\mathrm{C}-7$), 169.5 ($\mathrm{s}, \mathrm{CO}_{2} \mathrm{Et}$), 176.1 ($\mathrm{s}, \mathrm{C}-2$). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}: \mathrm{C}, 66.64 ; \mathrm{H}, 7.99$. Found: $\mathrm{C}, 66.68 ; \mathrm{H}, 8.13$.
(\pm)-(3a $\alpha, 8 \mathrm{a} \alpha)$-3 $\alpha, 6 \beta$-Dimethyl-2-oxo-3,3a,4,5,6,8a-hexa-hydro-2H-cyclohepta[b]furan-3 β-carboxylic Acid (16). A solution of $15(3.52 \mathrm{~g}, 14.0 \mathrm{mmol})$ and a 1 M aqueous solution of $\mathrm{KOH}(28 \mathrm{~mL}$) in ethanol (55 mL) was stirred at rt for 4 h , poured into a mixture of 2 M aqueous solution of $\mathrm{HCl}(28 \mathrm{~mL})$ and a saturated aqueous solution of $\mathrm{NaCl}(250 \mathrm{~mL})$, and extracted with EtOAc. The combined extracts were treated in the usual manner to give 16 ($3.11 \mathrm{~g}, 99 \%$) as colorless needles (CHCl_{3}): mp 109-111 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3500-2300, 1775, $1715 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.07$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{Me}$), 1.44 (3 $\mathrm{H}, \mathrm{s}, \mathrm{C}_{3}-\mathrm{Me}$), $2.45\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6}-\mathrm{H}\right), 3.02(1 \mathrm{H}$, ddd, J $=10.5$, $7.8,4.9 \mathrm{~Hz}, \mathrm{C}_{3 \mathrm{a}}-\mathrm{H}$), $5.40-5.62\left(3 \mathrm{H}, \mathrm{C}_{7-}{ }^{-} \mathrm{C}_{8}{ }^{-}\right.$, and $\mathrm{C}_{8 \mathrm{a}}-\mathrm{Hs}$), 8.91 $\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 16.5$ (q, $\left.\mathrm{C}_{3}-\mathrm{Me}\right)$, 20.9 (t), 21.2 (q, $\mathrm{C}_{6}-\mathrm{Me}$), 30.0 (t), 31.1 (d, C-6), 44.2 (d, C-3a), 54.3 (s, C-3), 80.1 (d, C-8a), 125.0 (d, C-8), 135.0 (d, C-7), 175.3 (s), 176.1 (s). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}$: C, 64.27; $\mathrm{H}, 7.19$. Found: $\mathrm{C}, 64.00 ; \mathrm{H}$, 7.35
(\pm)-(3a $\alpha, 8 \mathrm{a} \alpha$)-3 $\alpha, 6 \beta$-Dimethyl-3,3a,4,5,6,8a-hexahydro2 H -cyclohepta[b]furan-2-one (17a) and (\pm)-(3a $\alpha, 8 \mathrm{a} \alpha$)-3/,6/-Dimethyl-3,3a,4,5,6,8a-hexahydro-2H-cyclohepta-[b]furan-2-one (17b). The carboxylic acid $\mathbf{1 6}$ ($517 \mathrm{mg}, 2.31$ mmol) was heated in a Kügelrohr distillation apparatus at 145 ${ }^{\circ} \mathrm{C}$ (90 Torr). After evolution of CO_{2} ceased in 35 min , the residue was distilled under reduced pressure (1 Torr) at 145
${ }^{\circ} \mathrm{C}$ to give a 1:1.7 mixture of 17a and 17b (513 mg), which was separated by HPLC [col umn A; EtOAc-hexane (1:9); 28.5 $\mathrm{mL} / \mathrm{min}$].

The first peak ($\mathrm{t}_{\mathrm{R}} 7.4 \mathrm{~min}$) gave 17a ($141 \mathrm{mg}, 34 \%$) as colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) 3028,1772,1668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ $1.07\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{Me}\right), 1.24(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}$, $\mathrm{C}_{3}-\mathrm{Me}$), 2.25-2.38 ($2 \mathrm{H}, \mathrm{C}_{3}-$, and $\mathrm{C}_{3 \mathrm{a}}-\mathrm{Hs}$), $2.40\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6}-\mathrm{H}\right)$, 5.32 (1 H , ddd, J $=8.0,4.3,2.8 \mathrm{~Hz}, \mathrm{C}_{8 \mathrm{a}}-\mathrm{H}$), $5.41(1 \mathrm{H}$, ddd, J $=11.0,4.3,2.3 \mathrm{~Hz}, \mathrm{C}_{7}-\mathrm{H}$), $5.53(1 \mathrm{H}, \mathrm{ddd}$, J = 11.0, $2.8,1.8$ $\mathrm{Hz}, \mathrm{C}_{8}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 14.3$ ($\mathrm{q}, \mathrm{C}_{3}-\mathrm{Me}$), 21.8 ($\mathrm{q}, \mathrm{C}_{6}-\mathrm{Me}$), 26.5 (t), 29.8 (t), 32.6 (d, C-6), 40.6 (d), 44.6 (d), 79.4 (d, C-8a), 126.4 (d, C-8), 135.0 (d, C-7), 179.3 (s, C-2). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 73.30; H, 8.95. Found: C, 73.15; H, 9.14.

The second peak ($\mathrm{t}_{\mathrm{R}} 12.0 \mathrm{~min}$) gave spectroscopically pure 17b ($238 \mathrm{mg}, 57 \%$) as a colorless crystalline material, which was recrystallized from EtOAc-hexane to give colorless needles: $\mathrm{mp} 32.5-33.0^{\circ} \mathrm{C}$; IR (KBr) 3050, $1768 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.04\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{Me}\right), 1.18(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}$, $\left.\mathrm{C}_{3}-\mathrm{Me}\right), 2.49\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6}-\mathrm{H}\right), 2.65\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{3 \mathrm{a}}-\mathrm{H}\right), 2.86(1 \mathrm{H}$, $\left.d q, \mathrm{~J}=7.3,7.3 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 5.24(1 \mathrm{H}, \mathrm{br} d \mathrm{~d}, \mathrm{~J}=6.0,2.0 \mathrm{~Hz}$, $\left.\mathrm{C}_{8 \mathrm{a}}-\mathrm{H}\right), 5.47\left(1 \mathrm{H}\right.$, ddd, J $\left.=11,2,5.2,2.0 \mathrm{~Hz}, \mathrm{C}_{7}-\mathrm{H}\right), 5.60(1 \mathrm{H}$, ddd, J = 11.2, 2.0, $2.0 \mathrm{~Hz}, \mathrm{C}_{8}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 10.7$ ($\mathrm{q}, \mathrm{C}_{3}-\mathrm{Me}$), 19.5 (t), 21.1 (q, $\mathrm{C}_{6}-\mathrm{Me}$), 30.2 (d, C-6), 31.6 (t), 39.5 (d), 40.8 (d), 81.1 (d, C-8a), 124.6 (d, C-8), 135.8 (d, C-7), 178.6 ($\mathrm{s}, \mathrm{C}-2$). Anal. Cal cd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$: $\mathrm{C}, 73.30 ; \mathrm{H}, 8.95$. Found: $\mathrm{C}, 72.93$; H, 8.94.

Isomerization of (\pm)-17b. A solution of $\mathbf{1 7 b}$ ($2.82 \mathrm{~g}, 15.7$ mmol) in $1 \mathrm{M} \mathrm{NaOMe} / \mathrm{MeOH}(50 \mathrm{~mL})$ was stirred at rt for 4 h and poured into a mixture of $2 \mathrm{M} \mathrm{HCl}(30 \mathrm{~mL})$ and a saturated aqueous solution of $\mathrm{NaCl}(70 \mathrm{~mL})$. The mixture was worked up as usual to give an oily crude product (2.80 g), which was separated by HPLC [column A; EtOAc-hexane (1:9); $28.5 \mathrm{~mL} /$ min].

The first peak ($\mathrm{t}_{\mathrm{R}} 6.6 \mathrm{~min}$) gave 17a ($2.49 \mathrm{~g}, 88 \%$).
The second peak ($\mathrm{t}_{\mathrm{R}} 13.8 \mathrm{~min}$) gave $\mathbf{1 7 b}(294 \mathrm{mg}, 10 \%)$.
Conversion of (\pm)-17b to (\pm)-13b. The solution of 17b $(55.7 \mathrm{mg}, 0.309 \mathrm{mmol}),\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}(14 \mathrm{mg}, 0.015 \mathrm{mmol})$ in benzene (2 mL), and EtOH (2 mL) was stirred under an H_{2} atmosphere. H_{2} uptake (12 mL) ceased after 5.4 h . The reaction mixture was filtered, passed through short column of silica gel (0.3 g), and purified by HPLC [column B; EtOAchexane (1:9); $3.1 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}} 6.2 \mathrm{~min}$] to give $\mathbf{1 3 b}$ (49.1 mg , 87\%).
(\pm)-7 β-(2-Hydroxy-1 β-methylethyl)-4 β-methyl-2-cyclo-hepten-1 β-ol (18). A solution of 17b ($215 \mathrm{mg}, 1.19 \mathrm{mmol}$) in ether (2 mL) was added into a mixture of $\mathrm{LiAlH}_{4}(32 \mathrm{mg}, 0.84$ mmol) and ether (3 mL). The mixture was refluxed for 45 min under stirring and worked up as usual to give a crude product, which was purified by column chromatography $[15 \mathrm{~g} ; 2.0 \mathrm{~cm}$ i.d.; EtOAc-hexane (1:1)] to give 18 ($218 \mathrm{mg}, 98 \%$) as colorless prisms (EtOAc-hexane): mp $41-43^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) 3400 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}(90 \mathrm{MHz}) \delta 0.96\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{C}_{1}{ }^{\prime}-\mathrm{Me}\right), 1.07(3$ $\left.\mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{Me}\right)$, $2.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{W}_{\mathrm{h} / 2}=18 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right)$, $3.42\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.4,4.8 \mathrm{~Hz}, \mathrm{C}_{2}{ }^{\prime}-\mathrm{H}\right), 3.61(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.4$, $\left.7.5 \mathrm{~Hz}, \mathrm{C}_{2}^{\prime}-\mathrm{H}\right), 4.35\left(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=4.2 \mathrm{~Hz}, \mathrm{C}_{1}-\mathrm{H}\right), 5.60(1 \mathrm{H}$, dd, J = 14.4, 2.7, $\mathrm{C}_{3}-\mathrm{H}$), $5.77(1 \mathrm{H}$, ddd, J $=14.4,4.2,2.3 \mathrm{~Hz}$, $\mathrm{C}_{2}-\mathrm{H}$). Anal. Cal cd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2}: \mathrm{C}, 71.69 ; \mathrm{H}, 10.94$. Found: C, 71.57; H, 10.94.

Acetylation of (\pm)-18. A solution of $\mathbf{1 8}$ ($93 \mathrm{mg}, 0.50 \mathrm{mmol}$) and acetic anhydride ($71 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$) in pyridine (3 mL) was stirred at rt for 18 h and worked up as usual to give an oily crude product (109 mg), which was separated by preparative HPLC [column A; EtOAc-hexane (1:9); $28.5 \mathrm{~mL} / \mathrm{min}$].

The first peak ($\mathrm{t}_{\mathrm{R}} 5.2 \mathrm{~min}$) gave diacetate 19 ($31 \mathrm{mg}, 23 \%$) as a colorless oil.

The second peak ($\mathrm{t}_{\mathrm{R}} 10.2 \mathrm{~min}$) gave monoacetate $\mathbf{2 0}(66 \mathrm{mg}$, 58%) as colorless needles (EtOAc-hexane): mp $46-47^{\circ} \mathrm{C}$; IR (KBr) 3460, $1710 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.06$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}$, $\mathrm{C}_{4}-\mathrm{Me}$), $1.08\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{C}_{1}{ }^{\prime}-\mathrm{Me}\right), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$, $2.30\left(1 \mathrm{H}, \mathrm{m}, \mathrm{W}_{\mathrm{h} / 2}=23 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 3.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.0,6.2$ $\left.\mathrm{Hz}, \mathrm{C}_{2}^{\prime}-\mathrm{H}\right), 4.16\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.0,4.4 \mathrm{~Hz}, \mathrm{C}_{2}^{\prime}-\mathrm{H}\right), 4.51(1 \mathrm{H}$, br d, J $\left.=4.8 \mathrm{~Hz}, \mathrm{C}_{1}-\mathrm{H}\right), 5.51\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.6,2.6 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right)$, $5.71\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{J}=11.6,4.8,1.7 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3}: \mathrm{C}, 68.99 ; \mathrm{H}, 9.80$. Found: C, 68.59; $\mathrm{H}, 9.75$.

Hydrolysis of (\pm)-19. A solution of 19 ($126 \mathrm{mg}, 0.468$ mmol) and a 1 M aqueous solution of $\mathrm{KOH}(0.8 \mathrm{~mL})$ in ethanol (2 mL) was stirred at $21^{\circ} \mathrm{C}$ for 1 h and worked up as usual to give 18 ($86 \mathrm{mg}, 100 \%$) as colorless prisms.
(\pm)-7 β-(2-Acetoxy-1 β-methylethyl)-4 β-methyl-2-cyclo-hepten-1-one (21). A mixture of 20 ($226 \mathrm{mg}, 1.00 \mathrm{mmol}$), $\mathrm{MnO}_{2}(1.15 \mathrm{~g})$, and $\mathrm{CHCl}_{3}(11 \mathrm{~mL})$ was stirred for 23 h and filtered through Celite under reduced pressure. The filtrate was concentrated to give spectroscopically pure 21 (214 mg , 95%) as a colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) 1730,1678 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR $(90 \mathrm{MHz}) \delta 0.97\left(3 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{C}_{1}{ }^{\prime}-\mathrm{Me}\right), 1.17(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.7.4 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{Me}\right), 2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.50\left(3 \mathrm{H}, \mathrm{m}_{1} \mathrm{C}_{1^{\prime}-,} \mathrm{C}_{7}-\right.$, and $\left.\mathrm{C}_{4}-\mathrm{Hs}\right), 4.03\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.6 \mathrm{~Hz}, \mathrm{C}_{2}^{\prime}-\mathrm{H}\right), 5.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $\left.12.0,2.6 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right)$, $6.61\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,3.2 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right)$; EIMS m/e (relative intensity) 224 (${ }^{+}$, 2.4), 165 (12.6), 124 (100).
(\pm)-7 β-(2-Hydroxy-1 α-methylethyl)-4 β-methyl-2-cyclo-hepten-1 β-ol (22). A solution of 17 a ($1.24 \mathrm{~g}, 6.88 \mathrm{mmol}$) in ether (10 mL) was added into a mixture of $\mathrm{LiAlH}_{4}(261 \mathrm{mg}$, 6.88 mmol) and ether (30 mL). The mixture was refluxed under stirring for 1 h and worked up as usual to give a crude crystalline material (1.3 g), which was separated by column chromatography [$15 \mathrm{~g} ; 2.3 \mathrm{~cm}$ i.d.; EtOAc-hexane (3:7)] to give 22 ($1.16 \mathrm{~g}, 92 \%$) as col orless needles $\left(\mathrm{CHCl}_{3}\right): \mathrm{mp} 74-76^{\circ} \mathrm{C}$; IR (KBr) 3250 (br) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\delta 0.93(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}$, $\left.\mathrm{C}_{1}{ }^{\prime}-\mathrm{Me}\right), 1.04\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{Me}\right), 2.27\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4}-\mathrm{H}\right)$, $3.45\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.4,5.2 \mathrm{~Hz}, \mathrm{C}_{2}{ }^{\prime}-\mathrm{H}\right), 3.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.4$, $3.1 \mathrm{~Hz}, \mathrm{C}_{2}^{\prime}-\mathrm{H}$), $4.62\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{1}-\mathrm{H}\right)$, 5.44 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=11.2$, $3.7,2.0 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}$), $5.65(1 \mathrm{H}$, dddd, J $=11.2,4.5,2.5,1.0 \mathrm{~Hz}$, $\mathrm{C}_{2}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 16.6\left(\mathrm{q}, \mathrm{C}_{1^{\prime}}-\mathrm{Me}\right), 23.3\left(\mathrm{q}, \mathrm{C}_{4}-\mathrm{Me}\right), 30.0(\mathrm{t})$, 30.6 (t), 33.9 (d), 34.2 (d), 44.4 (d, C-7), 67.2 (t, C-2'), 74.0 (d, $\mathrm{C}-1$), 134.5 (d, C-2), 136.6 (d, C-3). Anal. Cal cd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 71.69; H, 10.94. Found: C, 71.89; H, 11.00.

Acetylation of (\pm)-22. A solution of 22 ($63.2 \mathrm{mg}, 0.343$ mmol) and acetic anhydride ($43.4 \mu \mathrm{~L}, 0.446 \mathrm{mmol}$) in pyridine (2 mL) was stirred for 29 h . Since recovered diol 22 was detected by TLC, acetic anhydride ($10 \mu \mathrm{~L}, 0.103 \mathrm{mmol}$) was added into the reaction mixture, which was stirred for a further 12 h . The reaction mixture was worked up as usual to give a colorless oil (88 mg), which was separated by flash chromatography ($7.5 \mathrm{~g} ; 1.6 \mathrm{~cm}$ i.d.).

The faster running [EtOAc-hexane (1:9)] gave diacetate $\mathbf{2 3}$ $(29.9 \mathrm{mg}, 32 \%)$ as a col orless oil. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{4}$: C, 67.14; H, 9.02. Found: C, 67.25; H, 9.14.

The slower running [EtOAc-hexane (3:7)] gave monoacetate $24(50.9 \mathrm{mg}, 66 \%)$ as a colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) 3620,1730$, $1250 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta 0.96\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{C}_{1}{ }^{\prime}-\mathrm{Me}\right), 1.05$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{Me}$), $2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.29(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{4}-\mathrm{H}\right), 4.01\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.0,7.1 \mathrm{~Hz}, \mathrm{C}_{2}^{\prime}-\mathrm{H}\right), 4.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $\left.=11.0,4.3 \mathrm{~Hz}, \mathrm{C}_{2}^{\prime}-\mathrm{H}\right), 4.58\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}_{\mathrm{J}} \mathrm{J}=3.9 \mathrm{~Hz}, \mathrm{C}_{1}-\mathrm{H}\right)$, 5.50 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=11.2,3.5,1.6 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}$), $5.68(1 \mathrm{H}$, ddd, J $\left.=11.2,4.9,2.5 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 15.8\left(\mathrm{q}, \mathrm{C}_{1}{ }^{\prime}-\mathrm{Me}\right), 21.0(\mathrm{q}$, $\left.\mathrm{Ac}-\mathrm{CH}_{3}\right), 23.2\left(\mathrm{q}, \mathrm{C}_{4}-\mathrm{Me}\right), 28.5(\mathrm{t}), 30.7(\mathrm{t}), 32.4\left(\mathrm{~d}, \mathrm{C}-1^{\prime}\right), 33.8$ (d, C-4), 43.4 (d, C-7), 68.6 (t, C-2'), 73.8 (d, C-1), 133.3 (d, C-2), 137.6 (d, C-3), 171.3 (s, Ac-CO); HREIMS m/e calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3}$ 226.1569, found 226.1578.

Hydrolysis of (\pm)-23. A solution of $\mathbf{2 3}$ ($10.3 \mathrm{mg}, 0.0384$ mmol) and a 1 M aqueous solution of $\mathrm{KOH}(77 \mu \mathrm{~L})$ in ethanol (0.2 mL) was stirred at rt for 2.3 h and worked up as usual to give a crude oil (8.5 mg), which was purified by flash chromatography to gi ve 22 ($6.6 \mathrm{mg}, 93 \%$).
(\pm)-7 β-(2-Acetoxy-1 α-methylethyl)-4 β-methyl-2-cyclo-hepten-1-one (25). A mixture of 24 ($46 \mathrm{mg}, 0.203 \mathrm{mmol}$), MnO_{2} ($265 \mathrm{mg}, 3.1 \mathrm{mmol}$), and $\mathrm{CHCl}_{3}(2.5 \mathrm{~mL})$ was stirred for 9 h . The mixture was worked up as usual to give a crude oil (50 mg), which was purified by flash chromatography [2.5 g; 1.2 cm i.d.; EtOAc-hexane (1:9)] to give 25 ($44.4 \mathrm{mg}, 98 \%$) as a col orless oil: IR $\left(\mathrm{CHCl}_{3}\right) 1734,1668,1252 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 0.91\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{C}_{1}^{\prime}-\mathrm{Me}\right), 1.17(3 \mathrm{H}, \mathrm{d}$, J $\left.=7.3 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{Me}\right), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.52\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{1}^{\prime}-\mathrm{H}\right), 2.56-$ $2.62\left(2 \mathrm{H}, \mathrm{C}_{4}-\right.$, and $\left.\mathrm{C}_{7}-\mathrm{Hs}\right), 3.95(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.4,6.5 \mathrm{~Hz}$, $\left.\mathrm{C}_{2}^{\prime}-\mathrm{H}\right), 3.97\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.4,6.5 \mathrm{~Hz}, \mathrm{C}_{2}{ }^{\prime}-\mathrm{H}\right), 5.96(1 \mathrm{H}, \mathrm{dd}$, J $=12.0,2.7 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}$), $6.33(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.0,3.4,0.5 \mathrm{~Hz}$, $\mathrm{C}_{3}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta 13.3\left(\mathrm{q}, \mathrm{C}_{1^{\prime}}-\mathrm{Me}\right), 20.9\left(\mathrm{q}, \mathrm{Ac}^{2} \mathrm{CH}_{3}\right)$, $22.0\left(\mathrm{q}, \mathrm{C}_{4}-\mathrm{Me}\right), 23.2(\mathrm{t}), 32.7$ (d, C-1$\left.{ }^{\prime}\right), 33.2(\mathrm{t}), 33.7(\mathrm{~d}, \mathrm{C}-4)$,
52.1 (d, C-7), 67.4 (t, C-2'), 131.7 (d, C-2), 151.0 (d, C-3), 171.1 (s, Ac-CO), 205.1 (s, C-1). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3}: \mathrm{C}, 69.61$; H, 8.99. Found: C, 69.37; H, 9.11.
(\pm)-7 β-[2-((tert-Butyldimethylsilyl)oxy)-1 α-methylethyl]4 β-methyl-2-cyclohepten-1 β-ol (27). A solution of diol 22 $(1.85 \mathrm{~g}, 10.0 \mathrm{mmol}), \operatorname{TBDMSCI}(1.66 \mathrm{~g}, 11.0 \mathrm{mmol})$, and imidazole ($3.47 \mathrm{~g}, 50.0 \mathrm{mmol}$) in DMF (7.5 mL) was stirred at rt for 80 min and worked up as usual to give a crude oil (3.2 g), which was separated by flash chromatography ($150 \mathrm{~g} ; 4.5$ cm i.d.).

The fraction which was eluted by hexane gave disilyl ether 26 ($335 \mathrm{mg}, 8 \%$) as a col orless oil. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{48} \mathrm{O}_{2^{-}}$ Si_{2} : C, 66.92; H, 11.72. Found: C, 66.80; H, 11.71.

The fraction which was eluted by a mixture of EtOAchexane (5:95) gave 27 ($2.71 \mathrm{~g}, 91 \%$) as a colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) 3396,3028 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.09$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{Si}-\mathrm{Me}$), 0.89 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.6 \mathrm{~Hz}, \mathrm{C}_{1}{ }^{\prime}-\mathrm{Me}$), $0.91(9 \mathrm{H}, \mathrm{s}, \mathrm{TBDMS} / \mathrm{t}-\mathrm{Bu}), 1.03$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{Me}$), $2.27\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4}-\mathrm{H}\right), 3.53(1 \mathrm{H}, \mathrm{dd}$, $\left.\mathrm{J}=10.5,5.1 \mathrm{~Hz}, \mathrm{C}_{2}{ }^{\prime}-\mathrm{H}\right), 3.81\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.5,3.1 \mathrm{~Hz}, \mathrm{C}_{2}{ }^{\prime}-\right.$ H), $4.50\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{W}_{\mathrm{h} / 2}=7.0 \mathrm{~Hz}, \mathrm{C}_{1}-\mathrm{H}\right), 5.40(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, \mathrm{J}=$ $11.3,3.6 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}$), $5.67\left(1 \mathrm{H}\right.$, ddd, J $=11.3,5.0,2.3 \mathrm{~Hz}, \mathrm{C}_{2}-$ H); ${ }^{13} \mathrm{C}$ NMR $\delta-5.5$ (q, $\mathrm{Si}-\mathrm{Me}$), -5.4 (q, $\mathrm{Si}-\mathrm{Me}$), 16.7 ($\mathrm{q}, \mathrm{C}_{1}{ }^{\prime}-$ $\mathrm{Me}), 18.3$ [s, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 23.3$ (q, $\left.\mathrm{C}_{4}-\mathrm{Me}\right), 25.8\left[\mathrm{q}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 30.4 (t), 30.5 (t), 33.9 (d), 34.1 (d), 45.0 (d, C-7), 68.0 (t, C-2'), 73.4 (d, C-1), 135.6 (d, C-2), 135.8 (d, C-3). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 68.39 ; \mathrm{H}, 11.48$. Found: C, $67.98 ; \mathrm{H}, 11.50$.

Desilylation of Disilyl Ether (\pm)-26. A solution of disilyl ether 26 ($2.11 \mathrm{~g}, 5.11 \mathrm{mmol}$) and n-Bu4NF (1 M in THF, 15.3 mL) in THF (30 mL) was stirred at rt for 18.5 h , poured into a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$, and worked up as usual to give a pale yellow oil (4.0 g), which was purified by flash chromatography [$52 \mathrm{~g} ; 3 \mathrm{~cm}$ i.d.; EtOAc-hexane (3: 7)] to give diol 22 ($937 \mathrm{mg}, 100 \%$) as colorless needles.
(\pm)-7 β-[2-((tert-Butyldimethylsilyl)oxy)-1 α-methylethyl]4 β-methyl-2-cyclohepten-1-one (28). A mixture of allylic al cohol $27(2.39 \mathrm{~g}, 8.01 \mathrm{mmol}), \mathrm{MnO}_{2}(13.9 \mathrm{~g}, 160 \mathrm{mmol})$, and $\mathrm{CHCl}_{3}(70 \mathrm{~mL})$ was stirred at rt for 48 h . The mixture was worked up as usual to give $\mathbf{2 8}(2.34 \mathrm{~g}, 99 \%)$ as a colorless oil: IR (neat) $3080,1674 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}-\mathrm{Me})$, 0.03 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Si}-\mathrm{Me}$), $0.83\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{C}_{1}{ }^{\prime}-\mathrm{Me}\right.$), 0.87 (9 $\mathrm{H}, \mathrm{s}, \mathrm{TBDMS} / \mathrm{t}-\mathrm{Bu}$), 1.16 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{Me}$), 2.33 (1 $\left.\mathrm{H}, \mathrm{m}, \mathrm{C}_{1}{ }^{\prime}-\mathrm{H}\right), 2.59\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4}-\mathrm{H}\right), 2.74\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{7}-\mathrm{H}\right), 3.41(1$ $\left.\mathrm{H}, \mathrm{dd}, \mathrm{J}=9.9,6.6 \mathrm{~Hz}, \mathrm{C}_{2}^{\prime}-\mathrm{H}\right), 3.49(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.9,5.8 \mathrm{~Hz}$, $\left.\mathrm{C}_{2}{ }^{\prime}-\mathrm{H}\right), 5.95\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,2.6 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right), 6.29(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $\left.=12.0,3.2 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right)$; ${ }^{13} \mathrm{C}$ NMR $\delta-5.50(\mathrm{q}, \mathrm{Si}-\mathrm{Me}),-5.45(\mathrm{q}$, $\mathrm{Si}-\mathrm{Me}), 13.0\left(\mathrm{q}, \mathrm{C}_{1}{ }^{\prime}-\mathrm{Me}\right), 18.2\left[\mathrm{~s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 22.1\left(\mathrm{q}, \mathrm{C}_{4}-\mathrm{Me}\right)$, $22.8(\mathrm{t}), 25.9$ [q, $\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$], 33.3 (t), 33.7 (d), 35.4 (d), 51.4 (d, C-7), 65.9 (t, C-2'), 132.0 (d, C-2), 150.4 (d, C-3), 206.3 (s, C-1). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}$: $\mathrm{C}, 68.86 ; \mathrm{H}, 10.88$. Found: C , 69.18; H, 11.07.

Optical Resolution of (\pm)-22 by Enzymatic Acetylation. 1. A mixture of (\pm)-22 ($91.9 \mathrm{mg}, 0.499 \mathrm{mmol}$), Amano Lipase PS (30.1 mg), powdered molecular sieves 4A (25.2 mg), and vinyl acetate (5 mL) was stirred at rt . The reaction was monitored by GC analysis. After 4.5 h , the ratio of diol/ monoacetate became ca. 1:1, and the reaction mixture was filtered through Celite and concentrated to give a crude mixture. The mixture was separated by HPLC [column C; EtOAc-hexane (3:7); $3.0 \mathrm{~mL} / \mathrm{min}$].

The first peak ($t_{R} 14.4 \mathrm{~min}$) gave (+)-24 ($53.6 \mathrm{mg}, 48 \%$) as a colorless oil, $[\alpha]^{25}+46.1$ (c $3.96, \mathrm{CHCl}_{3}$), whose IR and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were identical with those of (\pm) - 24.

The second peak ($\mathrm{t}_{\mathrm{R}} 32.2 \mathrm{~min}$) gave (-)-22 ($47.4 \mathrm{mg}, 52 \%$) as a colorless oil, $[\alpha]^{25} \mathrm{D}-13.0$ ($\mathrm{c} 3.65, \mathrm{CHCl}_{3}$), whose IR and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were identical with those of $(\pm)-22$.

Optical Resolution of (\pm)-22 by Enzymatic Acetylation. 2. A mixture of (\pm)-22 ($201 \mathrm{mg}, 1.09 \mathrm{mmol}$), Amano Lipase PS (59 mg), powdered molecular sieves 4A (101 mg), and vinyl acetate (10 mL) was stirred at rt for 8.5 h . The reaction mixture was treated as usual to give a crude mixture, which was separated by HPLC by the conditions mentioned above.

The first peak ($t_{R} 14.4 \mathrm{~min}$) gave (+)-24 ($127.9 \mathrm{mg}, 52 \%$) as a colorless oil: $[\alpha]^{25_{\mathrm{D}}}+38.0$ (c 1.11, CHCl_{3}), whose IR and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were identical with those of (\pm)-24.

The second peak ($\mathrm{t}_{\mathrm{R}} 32.2 \mathrm{~min}$) gave (-)-22 ($88.9 \mathrm{mg}, 44 \%$) as a colorless oil: $[\alpha]^{25} \mathrm{D}-16.5$ (c 1.42, CHCl_{3}), whose IR and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were identical with those of (\pm)-22.

Formation of (S)-(-)-MTPA Ester, (-)-(29), from (-)22 and (S)-(-)-MTPACI. A solution of (-)-22 $(7.3 \mathrm{mg}, 0.04$ mmol), DMAP ($2.4 \mathrm{mg}, 0.02 \mathrm{mmol}$), and (S)-(-)-MTPACI (11 $\mu \mathrm{L}, 0.06 \mathrm{mmol}$) in pyridine (0.15 mL) was stirred for 1.5 h . The reaction mixture was treated as usual to give a pale yellow oil (33 mg), which was separated by flash chromatography (2 g; 1.2 cm i.d.).

The eluent by EtOAc-hexane (5:95) gave di-MTPA ester of (-)-22 ($6.4 \mathrm{mg}, 26 \%$) as a colorless oil.

The eluent by a mixture of EtOAc-hexane (1:9) gave monoMTPA ester (-)-29 (11.0 mg, 69\%) as a colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}$ -63.5 (c 0.64, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\delta 0.96$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}$, $\left.\mathrm{C}_{1}{ }^{-}-\mathrm{Me}\right), 1.04\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{Me}\right.$), $1.94\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6}-\mathrm{H}\right)$, 2.05-2.35 ($2 \mathrm{H}, \mathrm{C}_{1^{\prime}}$-, and $\mathrm{C}_{4}-\mathrm{Hs}$) $3.56(3 \mathrm{H}, \mathrm{br} \mathrm{s},-\mathrm{OMe}), 4.4-$ $4.5\left(2 \mathrm{H}, \mathrm{C}_{2}^{\prime}-\mathrm{Hs}\right), 4.56\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{W}_{\mathrm{h} / 2}=7.0 \mathrm{~Hz}, \mathrm{C}_{1}-\mathrm{H}\right), 5.48(1$ H, ddd, J = 11.3, 3.5, 1.7 Hz, C 3 -H), 5.63 (1 H , ddd, J = 11.3, $\left.4.7,2.5 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right), 7.36-7.45$ (3 H, Ph), 7.45-7.58 ($2 \mathrm{H}, \mathrm{Ph}$).

From the analysis of the magnitude of shift induced by $\mathrm{Eu}(\mathrm{fod})_{3}$ and the integration values for OMe of $(-)$-29, the absolute configuration ($1^{\prime} \mathrm{R}$) and the enantiomeric excess of (-)22 (89% ee) were determined (see text). Since (-)-22 of 89\% ee showed $[\alpha]^{25}{ }_{\mathrm{D}}-16.5$ (c 1.42, CHCl_{3}), the $[\alpha]^{25} \mathrm{D}$ of enantiomerically pure (-)- 22 was estimated as -18.5 .

Hydrolysis of (+)-24 with a 1 M Aqueous Solution of KOH. A solution of (+)-24 ($19.7 \mathrm{mg}, 0.087 \mathrm{mmol}$) and a 1 M aqueous solution of $\mathrm{KOH}(174 \mu \mathrm{~L})$ in EtOH (0.4 mL) was stirred at rt for 2.5 h and poured into a mixture of a 2 M aqueous solution of $\mathrm{HCl}(0.2 \mathrm{~mL})$ and a saturated aqueous solution of $\mathrm{NaCl}(1 \mathrm{~mL})$. The mixture was worked up as usual to give a crude oily product (16 mg), which was purified by flash chromatography [$2.5 \mathrm{~g} ; 1.2 \mathrm{~cm}$ i.d.; EtOAc-hexane (2: 8)] to give (+)-22 (13.2 mg, 82\%): $[\alpha]^{25} \mathrm{D}+15.6$ (c 0.89, CHCl_{3}).

Formation of (S)-(-)-MTPA Ester of (+)-22. A solution of (+)-22 ($11.5 \mathrm{mg}, 0.062 \mathrm{mmol}$) and DMAP ($3.9 \mathrm{mg}, 0.03$ mmol) in pyridine (0.2 mL) was stirred for 2 min , and then (S)-(-)-MTPACI ($17.0 \mu \mathrm{~L}, 0.094 \mathrm{mmol}$) was added. The mixture was stirred at rt for 1 h , and then additional (S)-(-)-MTPACI ($5.7 \mu \mathrm{~L}, 0.031 \mathrm{mmol}$) was added. After 40 min , additional (S)-(-)-MTPACI ($5.7 \mu \mathrm{~L}, 0.031 \mathrm{mmol}$) was added. Stirring for a further 50 min completed the reaction, and the reaction mixture was worked up as usual to give an oily crude product (71 mg), which was separated by flash chromatography ($2.5 \mathrm{~g} ; 1.2 \mathrm{~cm}$ i.d.).

The eluent by EtOAc-hexane (5:95) gave di-MTPA ester ($14.2 \mathrm{mg}, 37 \%$) as a colorless oil.

The eluent by EtOAc-hexane (1:9) gave the desired monoMTPA ester, (-)-30 ($15.6 \mathrm{mg}, 63 \%$), as a colorless oil: $[\alpha]^{20}$ D -5.2 (c 1.06, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\delta 0.92\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{C}_{1^{\prime}}-\right.$ $\mathrm{Me}), 1.04\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{Me}\right)$, 3.45 ($3 \mathrm{H}, \mathrm{br} \mathrm{s},-\mathrm{OMe}$), $4.32\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.9,6.1 \mathrm{~Hz}, \mathrm{C}_{2}^{\prime}-\mathrm{H}\right), 4.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.9$, $3.9 \mathrm{~Hz}, \mathrm{C}_{2}{ }^{\prime}-\mathrm{H}$), $4.59\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{1}-\mathrm{H}\right), 5.50(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=11.3$, $\left.3.6,1.7 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 5.66\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=11.3,4.7,2.2 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right)$, 7.36-7.46 (3 H, Ph), 7.46-7.58 (2 H, Ph).

From the analysis of the magnitude of the shift induced by $\mathrm{Eu}(\mathrm{fod})_{3}$ of (-)-30, the absolute configuration (1'S) and enantiomeric excess (\% ee) of (+)-24 (77\% ee) were determined (see text). Since (+)-24 of 77% ee showed $[\alpha]^{25} \mathrm{D}+38.0$ (c 1.11, CHCl_{3}), the $[\alpha]^{25_{D}}$ of enantiomerically pure (+)-24 was estimated as +49.4.
(1'S)-(-)-7 β-(2-Acetoxy-1 α-methylethyl)-4 β-methyl-2-cyclohepten-1-one (-)-(25). A mixture of (+)-24 ($[\alpha]^{25} \mathrm{D}$ $+38.0,77 \%$ ee, $17.9 \mathrm{mg}, 0.079 \mathrm{mmol}$), MnO_{2} ($104 \mathrm{mg}, 1.19$ $\mathrm{mmol})$, and $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$ was stirred for 9 h . The mixture was worked up as usual to give a pale yellow crude oil (17.8 mg) which was purified by flash chromatography [$2.5 \mathrm{~g} ; 1.2$ cm i.d.; EtOAc-hexane (1:9)] to give enone (-)-25 (16.1 mg, 91%) as a colorless oil, $\left[\alpha{ }^{20^{2}}\right.$ - 108.4 (c $1.02, \mathrm{CHCl}_{3}$), which was identical with (\pm)-25 in IR and ${ }^{1} \mathrm{H}$ NMR.
(1'R)-(+)-7 α-(2-Acetoxy-1 β-methylethyl)-4 α-methyl-2-cyclohepten-1-one (+)-(25). A solution of (-)-22 ($[\alpha]^{25} \mathrm{D}$ $-16.5,89 \%$ ee, $32.6 \mathrm{mg}, 0.18 \mathrm{mmol}$) and $\mathrm{Ac}_{2} \mathrm{O}$ ($22.4 \mu \mathrm{~L}, 0.23$ mmol) in pyridine (1 mL) was stirred at rt for 31.5 h .

Additional $\mathrm{Ac}_{2} \mathrm{O}(5.0 \mu \mathrm{~L}, 0.05 \mathrm{mmol})$ was added into the reaction mixture, and the solution was stirred for a further 2 h. The reaction mixture was worked up as usual to give an oily crude product (41 mg), which was separated by flash chromatography ($7.5 \mathrm{~g} ; 1.6 \mathrm{~cm} \mathrm{i.d}$).
The first running which was eluted with a mixture of EtOAc-hexane (1:9) gave optically active diacetate (-)-23 ($11.9 \mathrm{mg}, 25 \%$), $[\alpha]^{20} \mathrm{D}-37.9$ (c $0.88, \mathrm{CHCl}_{3}$), which was identical with $(\pm)-23$ in IR and ${ }^{1} \mathrm{H}$ NMR.

The second running which was eluted with a mixture of EtOAc-hexane (3:7) gave optically active monoacetate (-)24 ($24.3 \mathrm{mg}, 61 \%$), $[\alpha]^{25} \mathrm{D}-45.3$ (c 1.32, CHCl_{3}), which was identical with $(\pm)-24$ in IR and ${ }^{1} \mathrm{H}$ NMR.

A mixture of (-)-24 ($[\alpha]^{25}{ }_{\mathrm{D}}-45.3,24.3 \mathrm{mg}, 0.107 \mathrm{mmol}$), $\mathrm{MnO}_{2}(140 \mathrm{mg}, 1.61 \mathrm{mmol})$, and $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$ was stirred for 12 h . The mixture was worked up as usual to give a crude oil (23.2 mg), which was purified by flash chromatography [2.5 g; 1.2 cm i.d.; EtOAc-hexane (1:9)] to give enone (+)-25 (21.5 $\mathrm{mg}, 90 \%$) as a col orless oil, $[\alpha]_{\mathrm{D}}^{20}+129.6$ ($\mathrm{c} 1.27, \mathrm{CHCl}_{3}$), which was identical with (\pm) - 25 in IR and ${ }^{1} \mathrm{H}$ NMR.

Acknowledgment. We express our thanks to Dr. M. Ueno (${ }^{1} \mathrm{H}$ NMR, 600 MHz), Mr. T. Sato (HREIMS), and Mrs. H. Ando (microanalyses) of the Instrumental Analysis Center for Chemistry, Tohoku University. We also thank Mr. J. Sakai of our department for the measurement of ${ }^{1} \mathrm{H} \mathrm{NMR}$ at 500 MHz and ${ }^{13} \mathrm{C}$ NMR at 125 MHz . We express our thanks to Amano Pharmaceutical Co., Ltd., in Nagoya for the kind donation of
"Amano Lipase PS", and also express our thanks to Chuo-Denki-K ogyo Co., Ltd., in Niigata for the donation of active MnO_{2} for our experiments. We also express our thanks to Y. Yanagi of Sumitomo Pharmaceuticals Co., Ltd., for bioassay of cell growth inhibitory activity of compounds to P-388 and to H. Yamazaki of Sumitomo Chemical Co., Ltd., for bioassay of compounds in controlling crop disease and herbicide test.

Supporting Information Available: Table of the comparison of ${ }^{1} \mathrm{H}$ NMR spectral data of $\mathbf{8 a}, \mathbf{8 b}, \mathbf{9 a}, \mathbf{9 b}$, and III; data table of the time progress of kinetic resolution of $(\pm)-22$ by vinyl acetate in the presence of Lipase PS (Amano); ${ }^{1} \mathrm{H}$ NMR charts and stereostructures of (S)-(-)-MTPA esters of (-)-22 and (+)-22 for determination of absolute configuration and enantiomeric excess by the lanthanide-induced shift by Eu(fod) $)_{3}$ for the -OMe group; CD curve of p-bromobenzoate and the stereostructure of p-bromobenzoate of (+)-24; spectral data of $\mathbf{5 , 7 a}$ and $\mathbf{7 b}, \mathbf{8 a}, \mathbf{9 a}, \mathbf{9 b}, \mathbf{1 9}, \mathbf{2 3}, \mathbf{2 6}$, di-MTPA ester of (+)and $(-)-22$ and Experimental Section for the preparation of $\mathbf{9 a}$ and $\mathbf{9 b}, 10 a$ and 10b, 11a and 11b, 12a and 12b, 13b, and isomerization of 12b and 13b (11 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

J O971529Q

[^0]: * To whom correspondence should be addressed. Phone: +81-25-262-7326. Fax: +81-25-263-3174 or +81-25-262-0785. E-mail: mando@ eng.niigata-u.ac.jp.
 ${ }^{\dagger}$ Graduate School of Science and Technology, Niigata University.
 \# Tohoku University.
 § Department of Applied Chemistry, Faculty of Engineering, Niigata University.
 (1) Connolly, J. D.; Hill, R. A. Dictionary of Terpenoids, Vol. 1; Chapman and Hall: London, 1991; pp 463-545.
 (2) Rodriguez, E.; Tower, G. H. N.; Mitchell, J . C. Phytochemistry 1976, 15, 1573.
 (3) Ando, M. J. Synth. Org. Chem. 1992, 50, 858.
 (4) Cordell, G. A.; F arnsworth, N. R. J. Nat. Prod. 1977, 40, 1.
 (5) Kupchan, S. M.; Eakin, M. A.; Thomas, A. M. J . Med. Chem. 1971, 14, 1147.
 (6) Lee, K.-H.; Huang, E.-S.; Piantadosi, C.; Pagano, J . S.; Geissman, T. A. Cancer Res. 1971, 31, 1649.
 (7) Kupchan, S. M.; Kelsey, J. E.; Maruyama, M.; Cassady, J . M. Tetrahedron Lett. 1968, 3517.

[^1]: (8) J olad, S. D.; Wiedhopf, R. M.; Cole, J . D. J. Pharm. Sci. 1974, 63, 1321.
 (9) Ogura, M.; Cordell, G. A.; Farnsworth, N. R. Phytochemistry 1978, 17, 957.
 (10) Cassady, J . M.; Suttness, M. Anti cancer Agent Based on Natural Product Models; Cassady, J . M., Douros, J ., Eds.; Academic Press: New York; 1980; pp 206-224.
 (11) Ando, M.; Kusaka, H.; Ohara, H.; Takase, K.; Yamaoka, H.; Yanagi, Y. J. Org. Chem. 1989, 54, 1952.
 (12) Ando, M.; I sogai, K.; Azami, H.; Hirata, N.; Yanagi, Y. J . Nat. Prod. 1991, 54, 1017.
 (13) Ando, M.; Isogai, K.; Azami, H.; Hirata, N.; Yamazaki, H.; Yanagi, Y. J. Nat. Prod. 1992, 55, 1620.
 (14) Ando, M.; Wada, T.; Kusaka, H.; Takase, K.; Hirata, N.; Yanagi, Y. J. Org. Chem. 1987, 52, 4792.
 (15) Robles, M.; Aregullin, M.; West, J .; Rodriguez, E. Planta Med. 1995, 61, 199.
 (16) Vichnewski, W.; Gilbert, B. Phytochemistry 1972, 11, 2563.
 (17) Garcia, M.; Da Silva, A. J. R.; Baker, P. M.; Gilbert, B.; Rabi, J. A. Phytochemistry 1976, 15, 331.
 (18) Sánchez-Viesca, F.; Ramo, J. Tetrahedron 1963, 19, 1285.
 (19) Bates, R. B.; Cekan, Z.; Procházka, V.; Herout, V. Tétrahedron Lett. 1963, 1127.

[^2]: (32) Dewar, M. J . S. Nature 1945, 155, 50.

[^3]: (33) We have already completed the syntheses of two ambrosanolides, hymenolin and parthenin from the intermediate \mathbf{C}, and the synthesis of the C-1-C-8 part of octalactins A and B (formal total syntheses of these compounds) from intermediate B. These results will appear in the following papers of this series.
 (34) Ando, M.; Kataoka, N.; Y asunami, M.; Takase, K.; Hirata, N.; Yanagi, Y. J. Org. Chem. 1987, 52, 1429.

[^4]: (35) Barton, D. H. R.; McCombie, S. W. J . Chem. Soc., Perkin Trans

[^5]: (36) Dale, J. A.; M osher, H. S. J. Am. Chem. Soc. 1973, 95, 512.

[^6]: (37) (a) Y asuhara, F.; Yamaguchi, S. Tetrahedron Lett. 1977, 4085. (b) Yamaguchi, S. Asymmetric Synthesis, Vol. 1; Morrison, J. D., Ed.; Academic Press: 1983, pp 125-152. (c) Sugimoto, Y.; Sakita, T., Moriyama, Y.; Murae, T.; Tsuyuki, T.; Takahashi, T. Tetrahedron Lett. 1978, 4285. (d) Sugimoto, Y.; Sakita, T.; Ikeda, T.; M oriyama, Y.; Murae, T.; Tsuyuki, T.; Takahashi, T. Bull. Chem. Soc. J pn. 1979, 52, 3027. (e) Sugimoto, Y.; Tsuyuki, T.; M oriyama, Y.; Takahashi, T. Bull. Chem. Soc. J pn. 1980, 52, 3027.
 (38) (a) Harada, N.; I wabuchi, J .; Y okota, Y.; Uda, H.; Nakanishi, K. J. Am. Chem. Soc. 1981, 103, 5590. (b) Nakanishi, K.; Berova, N. Circular Dichroism, Principles and Applications, Chapter 10; Nakanishi, K., Berova, N., Woody, R. W., Eds.; VCP Publishers: Cambridge, U.K., 1994, and references cited therein.

